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ABSTRACT 
In Chemical Graph Theory, the connectivity indices are applied to measure the chemical characteristics of 

compounds. In this paper, we compute the multiplicative product connectivity index and the multiplicative sum 

connectivity index of three infinite families NS1[n], NS2[n], NS3[n] dendrimer nanostars. 
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I. INTRODUCTION 
Let G be a finite, simple connected graph with vertex set V(G) and edge set E(G). The degree dG(v) of a vertex v 

is the number of vertices adjacent to v. We refer to [1] for undefined term and notation. 

 

A molecular graph or a chemical graph is a finite, simple graph such that its vertices correspond to the atoms 

and the edges to the bonds. Chemical Graph Theory is a branch of Mathematical chemistry which has an 

important effect on the development of the chemical sciences. A single number that can be used to characterize 

some property of the graph of a molecular is called topological index of that graph. There are several topological 

indices that have some applications in chemistry in QSPR/QSAR study [2]. 

 

Motivated by the definition of the product connectivity index and its wide applications, Kulli [3] introduced the 

multiplicative product connectivity index and multiplicative sum connectivity index of a molecular graph as 

follows: 

 

The multiplicative product connectivity index of a graph G is defined as  
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The multiplicative sum connectivity index of a graph G is defined as  
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Recently many multiplicative indices were studied, for example, in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 

17, 18]. Also some connectivity indices were studied, for example, in [19, 20, 21, 22, 23, 24, 25]. 

 

In this paper, we compute the multiplicative product connectivity index and multiplicative sum connectivity 

index for three infinite classes NS1[n], NS2[n] and NS3[n] dendrimer nanostars. For more information about these 

dendrimer nanostars see [26, 27]. 
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II. RESULTS FOR NS1[N] DENDRIMER NANOSTARS 
We consider the first class of dendrimer nanostars. This family of dendrimer nanostars is symbolized by NS1[n], 

where n is steps of growth in this type of dendrimer nanostars. The graph of NS1[3] dendrimer nanostar is 

presented in Figure 1. 

 
Figure 1. The graph of NS1[3] 

 

In the following theorem, we compute the multiplicative product connectivity index of NS1[n] dendrimer 

nanostars. 

 

Theorem 1. The multiplicative product connectivity index of NS1[n] dendrimer nanostar is 
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Proof: Let G be the graph of NS1[n] dendrimer nanostar. By calculation, we obtain that G has 27×2n – 5 edges. 

We can see easily that the vertices of NS1[n] are of degree 1, 2, 3 or 4, see Figure 1. Also by calculation, we 

obtain that G has four types of edges based on the degree of end vertices of each edge as given in Table 1. 

 
Table 1. Edge partition of NS1[n] 

dG(u), dG(v)\uvE(G) (1, 4) (2, 2) (2, 3) (3, 4) 

Number of edges 1 9×2n+3 18×2n – 12 3 

We have  
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By using Table 1, we have  
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In the next theorem, we compute the multiplicative sum connectivity index of NS1[n] dendrimer nanostars. 

 

Theorem 2. The multiplicative sum connectivity index of NS1[n] dendrimer nanostar is 
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Proof: We have  
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By using Table 1, we have  
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III. RESULTS FOR NS2[N] DENDRIMER NANOSTARS 
We consider the second class of dendrimer nanostars. This family of dendrimer nanostars is symbolized by 

NS2[n], where n is steps of growth in this type of dendrimer nanostars. The graph of NS2[2] dendrimer nanostar 

is shown in Figure 2. 

 

 
Figure 2 The graph of NS2[2] 

 

In the following theorem, we compute the multiplicative product connectivity index of NS2[n] dendrimer 

nanostar. 

 

Theorem 3. The multiplicative product connectivity index of NS2[n] dendrimer nanostar is 
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Proof: Let H be the graph of NS2[n] dentrimer nanostar. By calculation, we obtain that H has 36 × 2n – 5 edges. 

One can see easily that the vertices of NS2[n] are of degree 2 or 3, see Figure 2. Also by calculation, we obtain 

that H has three types of edges based on the degree of end vertices of each edge as given in Table 2. 

 
Table 2. Edge partition of NS2[n] 

dH(u), dH(v)\uvE(H) (2, 2) (2, 3) (3, 3) 

Number of edges 12×2n+2 24×2n – 8 1 

 

We have  
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By using Table 1, we have  
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In the next theorem, we compute the multiplicative sum connectivity index of NS2[n] dendrimer nanostar. 

 

Theorem 4. The multiplicative sum connectivity index of NS2[n] dendrimer nanostar is 
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By using Table 1, we have  
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IV. RESULTS FOR NS3[N] DENDRIMER NANOSTARS 
We consider the third class of dendrimer nanostars. This family of dendrimer nanostars is symbolized by NS3[n], 

where n is steps of growth in this type of dendrimer nanostar. The graph of NS3[n] dendrimer nanostar is 

presented in Figure 3. 

 
Figure 3. The graph of NS3[n] 

 

In the following theorem, we compute the multiplicative product connectivity index of NS3[n] dendrimer 

nanostars. 

 

Theorem 5. The multiplicative product connectivity index of NS3[n] dendrimer nanostar is 
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Proof: Let G be the graph of NS3[n] dendrimer nanostar. By calculation, we obtain that G has 58 × 2n – 13 

edges. We can see easily that the vertices of NS3[n] are of degree 1, 2 or 3, see Figure 3. Also by calculation, we 

obtain that G has four types of edges based on the degree of end vertices of each edge as given in Table 3.  
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Table 3. Edge partition of NS3[n] 

dG(u), dG(v)\uvE(G) (1, 3) (2, 2) (2, 3) (3, 3) 

Number of edges 2n+1 22×2n – 7 28×2n – 6 6×2n 
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By using Table 3, we have  
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In the next theorem, we compute the multiplicative sum connectivity index of NS3[n] dendrimer nanostar. 

 

Theorem 6. The multiplicative sum connectivity index of NS2[n] dendrimer nanostar is 
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By using Table 3, we have  
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